AN ENTHE FUNOTION 8HARING A POLYNOMIAL WITH linear differential polynomials

Guutan Kumar Ghum

Abstract

Abethaut. The uniqueness problems on entire funetions sharing at least two valuus with their durivativus or linear differential polynomials bave been studied and many reeulte on this topic have boen obtaised. In this papor, we study an entire function $f(z)$ that sharis an nonzuro polynucaial $a(z)$ with $f^{(1)}(s)$, together with its linear differential polynomiais of the form: $L=L(f)=a_{1}(z) f^{(1)}(z)+a_{2}(z) f^{(2)}(z)+\cdots+a_{n}(z) f^{(n)}(s)$, where the coofficients $u_{k}(x)(k=1,2, \ldots, n)$ are rational functions and $u_{n}(z)$ at

1. Introduction, definitions and results

In the paper, by ineromorphic functions wo shall always mean meromorphe functions in the complex plane \mathbb{C}. We adopt the standard notations of che Nevanlinna theory of meromorphic functions as explained in [2]. It will be convenient to let E denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence. For a nod-constant meromorphic function h, we denote by $T(r, h)$ any quantity satisfing $S(r, h)=$ o $\{T(r, h)\}$ as $r \rightarrow \infty$ and $r \notin E$.

Let f and g be two nonconstant meromorphic functions nad let a be a small function of f. We denote by $E(a ; f)$ the set of a-points of f, where eacth point is counted according its multiplicity. We denote by $E(a ; f)$ the reduced form of $E(a ; f)$. We say that f, g share a CM , provided that $E(a, f)=E(\mathrm{a}: g)$, and we say that f and g share $a \mathrm{IM}$, provided that $E(a ; f)=E(a ; g)$. In addition. we say that f and g share $\infty \mathrm{CM}$, if $\frac{1}{j}$ and $\frac{1}{9}$ share 0 CM , and we say that f and g share $\infty \mathrm{IM}$, if $\frac{1}{f}$ and $\frac{1}{g}$ share 0 IM

In 1977, L. A. Rubel and C. C. Yaug (8) firnt investigated the uniqueneas of entire functions, which share certain values with their derinatives. The followlag is the result of Rubel and Yang [8].

